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Abstract: The Adomian decomposition method is applied to a known from the bibliography
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1 Introduction

In the past few years interest has increased in the solution of partial differential equations governing
non-linear waves in dispersive media. As a result several texts and numerous research papers have
been devoted to the subject. In parallel with the mathematical treatment a considerable literature
has grown dealing with the numerical solution of such problems. Among them a great interest has
been developed for equations, which possess special solutions in the form of pulses, which retain
their shapes and velocities after interaction amongst themselves. Such solutions are called solitons.
Solitons are of great importance in many physical areas, as for example, in dislocation theory of
crystals, plasma and fluid dynamics, magnetohydrodynamics, laser and fiber optics etc., as well as
in the study of the water waves. The development of analytical solutions of soliton type equations
has been with us for many years (see for example Ablowitz and Segur [1] who implemented the
inverse scattering transform method, Hirota [9] who constructed the N soliton solutions using the
bilinear form, as well as Whitman [17] etc.). A part of these equations is going to be examined at
the present paper.

The archetypal equation introduced by Korteweg & de Vries (KdV) [11], which describes long
gravity waves moving over stationary water is written as

du ou  Ou
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Once the general method of solution of the KdV equation was obtained (see Gardner [8]), many

other equations and mathematical approaches followed. In the particular field of water waves, two

families of evolution equations occur: one is the KdV family of equations and the other is based
on the nonlinear Schrédinger (NLS) equation

Ou N 0%y

1=+ =

ot Ox?

The Boussinesq (BS) nonlinear equation, which belongs to the KdV family of equations, de-

scribes shallow water waves propagating in both directions, is given by
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where u = u(xz,t) is a sufficiently often differentiable function and lgl = 1 is a real parameter.
Taking g = —1 gives the Good Boussinesq or well-posed equation (GB), while taking ¢ = 1 gives

the Bad Boussinesq or ill-posed equation (BB). Besides to Hirota [9] bilinear formalism, Nimmo
and Freeman [13] introduced an alternative formulation of the N-soliton solutions in terms of some
function of the Wronskian determinant of N functions, Kaptsov [10] implemented Hirota’s method
to construct a new set of exact solutions of BS equation, while recently, among others, numerical
solutions of the BS equation have been given by Bratsos [3] using the method of lines and Wazwaz
[15] using the Adomian decomposition method.

The initial displacements associated with BS equation will be assumed to have the form,

Ou (z,0)

u(z,0) = g(z) and 5

=g(x); Lo <z < Ly. (3)

1.1 The single-soliton solution

Following Manoranjan et al [12] the theoretical solution of BS equation is given by

w(z,t) : o {Asech2 [\/%(r —ct+ mo)J + (b - %)} . (4)

where A is the amplitude of the pulse, b is an arbitrary parameter, xg is the initial position of the
pulse and ¢ = =+ [2¢; (b + A/B)]lﬂ, where ¢; = 1 for the BB and ¢; = —1 for the GB equation.

1.2 The double-soliton solution

Similarly following Hirota [9] and Manoranjan et al [12], who obtained a double-soliton solution
for GB, the double-soliton solution for both GB and BB can be written as,

92
u(z,t) = 6(]15;5 llog, f (z.t)], (5)

where f (z,1) = 1+exp (1) +exp (79) +aexp (m +mn2) withn; = P; {x —€; (1 +q 131:2)1/2 t— qlfc?]
fori=1,2 and ¢; = +1 or —1 showing the direction in which the two solitons are traveling,

[S)

_ (E]L’L — 621/2)2 + 3q (P1 - Pg)
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in which v; = (1 + qle)]/? and P? = %Ai: i =1,2, where 4; is the amplitude and z? the initial
position of the -th soliton (see also Bratsos [4]).
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2 The Adomian method
Consider Eq. (2) written in an operator form as

d%u u O? (u"")

Lu=sotagat 52

Lo<ax<Ly, t>0, (6)

where

L= 5. ©)

is a twice integrable differential operator with

L71() = /0r /01 (.)dt dt. (8)

Following the Adomian decomposition method (see Adomian [2]) the unknown solution function
u is assumed to be given by a series of the form

u(@.t) = un(a.1), (9)
n=0

where the components u,, (z.t) are going to be determined recurrently, while the nonlinear term
F(u)= (uz)u in Eq. (2) is decomposed into an infinite series of polynomials of the form

F(u)=Y An (10)
n=0
with A,, the so-called Adomian polynomials of ug, u;, ..., u, defined by

1 ar =
Ap == o [F (g,\ Ul)L_o for n=0.1,2, ... (11)

and constructed for all classes of nonlinearity according to algorithms given either by Adomian [2]
or alternatively by Wazwaz [14], [16].

3 Numerical experiments

The Adomian decomposition method for solving the BS equation was tested numerically to the
problems proposed by Bratsos [3], [4] with boundary lines Ly = —80 and L; = 100. initial condi-
tions defined by Eq. (3) and theoretical solutions given by Eq. (4) for the single and Eq. (5) for
the double-soliton waves.
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